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Abstract
When two elastic solids with randomly rough surfaces are brought in contact, a very
inhomogeneous stress distribution σ(x) will occur at the interface. Here I study the elastic
energy and the correlation function 〈σ(q)σ (−q)〉, where σ(q) is the Fourier transform of σ(x)

and where 〈· · ·〉 stands for ensemble average. I relate 〈σ(q)σ (−q)〉 to the elastic energy stored
at the interface, and I show that for self-affine fractal surfaces, quite generally
〈σ(q)σ (−q)〉 ∼ q−(1+H ), where H is the Hurst exponent of the self-affine fractal surface.

The contact between elastic solids with surfaces with
roughness on many length scales is a topic of great practical
importance. Particularly important are the area of real
contact A, which in most cases determines the sliding friction
force, and the asperity induced elastic energy Uel stored
at the interface, which is directly related to the interfacial
separation [1].

In a recent paper Campana et al [2] have presented
numerical simulation results for the stress distribution at the
interface between two elastic solids with randomly rough (self-
affine fractal) surfaces. They have shown that the stress
correlation function

〈σ(q)σ (−q)〉 ∼ q−(1+H )

where H is the Hurst exponent of the self-affine fractal surface.
Here I show that this is also the prediction of the contact
mechanics theory of Persson [3]. I also derive some other
results related to the elastic energy and the accuracy of the
Persson theory.

Consider the contact between two elastic solids with rough
surfaces, but which appear flat at low resolution. We can write
the elastic energy stored in the vicinity of the asperity contact
regions as

Uel = 1
2

∫
d2x 〈σ(x)u(x)〉 (1)

where u(x) and σ(x) are the normal displacement and the

normal stress, respectively. We write

σ(x) =
∫

d2q σ(q)eiq·x (2)

and similar for u(x). Substituting this in (1) gives

Uel = (2π)2 1
2

∫
d2q 〈σ(q)u(−q)〉. (3)

Next, using that [3]

σ(q) = 1
2 E∗qu(q) (4)

where E∗ = E/(1−ν2) is the effective elastic modulus (where
E is the Young’s modulus and ν the Poisson ratio) gives

Uel = (2π)2 1

E∗

∫
d2q q−1〈σ(q)σ (−q)〉 (5)

and

Uel = (2π)2 E∗

4

∫
d2q q〈u(q)u(−q)〉. (6)

For complete contact u(q) = h(q) and using the definition

〈h(q)h(−q)〉 = A0

(2π)2
C(q) (7)

gives for complete contact

Uel = E∗ A0

4

∫
d2q qC(q). (8)
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Now, for incomplete contact I define W (q) so that

Uel = E∗ A0

4

∫
d2q qC(q)W (q). (9)

I have argued elsewhere [4] that W (q) = P(q) = A(ζ )/A0

is the relative contact area when the interface is studied at
the magnification ζ = q/q0. The qualitative explanation is
that the solids will deform mainly in the regions where they
make contact and most of the elastic energy will arise from the
contact regions. In particular, for complete contact P(q) = 1
and in this limit using W = P = 1 would be exact. I will show
below that W (q) = P(q) follows directly from the contact
mechanics theory of Persson, but for the moment we simply
define W (q) via (9).

Comparing (5) and (9) gives

〈σ(q)σ (−q)〉 =
(

E∗

4π

)2

A0q2C(q)W (q). (10)

In what follows we need∫
d2q 〈σ(q)σ (−q)〉

= 1

(2π)4

∫
d2x d2x ′

∫
d2q 〈σ(x)σ (x′)〉e−iq·(x−x′)

= 1

(2π)2

∫
d2x 〈σ 2(x)〉 = A0

(2π)2
〈σ 2〉. (11)

Substituting (10) in (11) gives

∫ q

q0

dq q3C(q)W (q) = 2

π

〈σ 2〉
E∗2 . (12)

All the equations (1)–(12) presented above are exact.
Now, it is easy to calculate 〈σ 2〉 approximately using the

Persson contact mechanics theory [3]. The basic equation for
the stress distribution P(σ, ζ )

∂ P

∂ζ
= f (ζ )

∂2 P

∂σ 2
(13)

where
f (ζ ) = π

4
E∗2q0q3C(q) (14)

where q = q0ζ . Multiply (13) with σ 2 and integrate over σ :

d〈σ 2〉
dζ

= f (ζ )

∫ ∞

0
σ 2 ∂2 P

∂σ 2

= 2 f (ζ )

∫ ∞

0
dσ P(σ, ζ ) (15)

where I have performed two partial integrations. Now, note
that ∫ ∞

0
dσ P(σ, ζ ) = A(ζ )

A0
= P(ζ ) (16)

which I also denote as P(q) (q = q0ζ ) for simplicity. Using
the definition of f (ζ ) we get

〈σ 2〉 = π

2
E∗2

∫ q

q0

dq q3C(q)P(q). (17)

Substituting (17) in (12) gives

∫ q

q0

dq q3C(q)W (q) =
∫ q

q0

dq q3C(q)P(q). (18)

Thus we get W (q) = P(q). The resulting equation for the
elastic energy was used in [4], but only qualitative arguments
were given for its validity (see above). Here we have proved
that it follows rigorously within the Persson contact mechanics
theory. Substituting this result in (10) gives

〈σ(q)σ (−q)〉 =
(

E∗

4π

)2

A0q2C(q)P(q). (19)

Assume now a self-affine fractal surface. In this case

C(q) ∼ q−2(H+1). (20)

If we assume that the relative contact area is small then

P(q) ≈ [πG(q)]−1/2 (21)

where

G(q) =
(

E∗

σ0

)2
π

4

∫ q

q0

dq q3C(q)

∼ q2(1−H ) − q2(1−H )

0 ≈ q2(1−H ) (22)

when q 	 q0. Thus,

P(q) ∼ q H−1 (23)

when the contact is small and q 	 q0. Substituting these
results into (19) gives the q-dependence

〈σ(q)σ (−q)〉 ∼ q−(1+H ) (24)

in good agreement with recent numerical studies of contact
between elastic solids with randomly rough surfaces [2]. It
is interesting to note that contact mechanics models which
neglect the long-ranged elastic deformation, such as the
asperity contact models of Greenwood and Williamson [5] and
of Bush et al [6], predict incorrect scaling where 1 + H in (24)
is replaced by 2(1 + H ) (see [2]). Thus the lateral correlation
of the stress, as reflected by the correlation function

〈σ(x)σ (0)〉 = (2π)2

A0

∫
d2q〈σ(q)σ (−q)〉eiq·x

is incorrectly described by these theories.
Detailed analysis of molecular dynamics [7], finite

element method [8] and Green’s function molecular dynamics [9]
calculations indicate some small deviations from the prediction
of the theory of Persson. Thus, for self-affine fractal surfaces
with the fractal dimension Df ≈ 2.2 (which is typical for many
surfaces of engineering interest) the contact area calculated as
a function of the squeezing pressure tend to be about ∼20%
larger at small pressures (where A varies linearly with p)
than predicted by the Persson theory. When the squeezing
pressure increases, the deviation becomes smaller and vanishes
at complete contact. Similarly, analysis of the (average)
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interfacial separation as a function of the applied pressure (or
load) indicate that the elastic energy in the asperity contact
regions may be slightly overestimated in the theory of Persson
at low squeezing pressure (see [7]), while the difference
decreases at higher squeezing pressures and vanishes for
complete contact. Here we will use the theory above to show
that these two facts are in fact related.

Let us first derive an improved expression for f (ζ ) which
occurs in (14). Let us write

f (ζ ) = π

4
E∗2q0q3C(q)S(q). (25)

Instead of (18) we then obtain
∫ q

q0

dq q3C(q)W (q) =
∫ q

q0

dq q3C(q)P(q)S(q) (26)

so that
S(q) = W (q)/P(q).

In [7] we have compared the theory prediction for the
interfacial separation as a function of the squeezing pressure
(which depends on Uel and hence on W (q)) with MD
calculations and found that for self-affine fractal surfaces with
the fractal dimension Df = 2.2 good agreement with the
simulation results are obtained if instead of W (q) = P(q) one
uses

W (q) = P(q)
[
β + (1 − β)P2(q)

]
, (27)

where β ≈ 0.5, so that

S(q) = β + (1 − β)P2(q). (28)

This will result in

G(q) =
(

E∗

σ0

)2
π

4

∫ q

q0

dq q3C(q)S(q) (29)

so that the area of real contact for a small load (where A ∝
G−1/2 increases linear with the load) will be enhanced by a
factor of 1/

√
β . This is in agreement with the numerical

simulation results [7–9].

I thank Carlos Campana, Martin Müser and Mark Robbins for
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